Skip to content

Inverse Trigonometric Functions

Teachers: Anonymous
Source: Internet

TRIGONOMETRIC FUNCTIONS

In class 11 maths, students have already learnt trigonometric function. The inverse trigonometric function is the inverse of a trigonometric function.

In this chapter of maths, students will learn concepts related to the definition of inverse trigonometric functions, domain, range, and principal value, graph, and properties of inverse trigonometric functions.

Students have already learnt that trigonometric functions are not one to one and onto in their natural ranges. All these questions & solutions are explained in step-by-step method for class 12 students. These are important while practice the problems and in depth understanding of this section.

ক্লাস 11 গণিতে, শিক্ষার্থীরা ইতিমধ্যে ত্রিকোণমিতিক অপেক্ষকসমূহ শিখেছে। বিপরীত ত্রিকোণমিতিক অপেক্ষকসমূহ হল একটি ত্রিকোণমিতিক অপেক্ষকসমূহের বিপরীত।

গণিতের এই অধ্যায়ে, শিক্ষার্থীরা বিপরীত ত্রিকোণমিতিক অপেক্ষকসমূহ সংজ্ঞা সম্পর্কিত ধারণাগুলি শিখবে। শিক্ষার্থীরা ইতিমধ্যেই শিখেছে যে ত্রিকোণমিতিক অপেক্ষকসমূহগুলি তাদের প্রাকৃতিক সীমার মধ্যে এক থেকে এক নয়।

এই সমস্ত প্রশ্ন এবং সমাধান 12 শ্রেনীর শিক্ষার্থীদের জন্য ধাপে ধাপে পদ্ধতিতে ব্যাখ্যা করা হয়েছে। এই বিভাগের সমস্যা এবং গভীরভাবে বোঝার অনুশীলন করার সময় এগুলি গুরুত্বপূর্ণI

Question:1

Find the principal values of

sin^{-1}left ( frac{-1}{2} right )

Answer:

Let x = sin^{-1}left ( frac{-1}{2} right )

implies sin x = frac{-1}{2}= -sin(frac{pi}{6}) = sin(-frac{pi}{6})
We know, principle value range of sin^{-1} is [-frac{pi}{2}, frac{pi}{2}]

therefore The principal value of sin^{-1}left ( frac{-1}{2} right ) is -frac{pi}{6},

Question:2

Find the principal values of

cos^{-1}left(frac{sqrt3}{2} right )


Answer:
So, let us assume that cos^{-1}left(frac{sqrt3}{2} right ) = x then,

Taking inverse both sides we get
cos x = (frac{sqrt{3}}{2}) , or cos (frac{pi}{6}) = (frac{sqrt{3}}{2})
and as we know that the principal values of cos^{-1} is from [0, pi ],
Hence cos x = (frac{sqrt{3}}{2}) when x = frac{pi}{6} .
Therefore, the principal value for cos^{-1}left(frac{sqrt3}{2} right ) is frac{pi}{6} .

Question:3

Find the principal values of

textup{cosec}^{-1}(2)


Answer:
Let us assume that textup{cosec}^{-1}(2) = x ,
then we have;Cosec x = 2 , orCosec( frac{pi}{6}) = 2 .
And we know the range of principal values is [frac{-pi}{2},frac{pi}{2}] - left { 0 right }.
Therefore the principal value of textup{cosec}^{-1}(2) is frac{pi}{6} .

Question:4

Find the principal values of

tan^{-1}(-sqrt3)


Answer:
Let us assume that tan^{-1}(-sqrt3) = x ,
then we have tan x = (-sqrt 3) or

-tan (frac{pi}{3}) = tan left ( frac{-pi}{3} right ).

and as we know that the principal value of tan^{-1} is left ( frac{-pi}{2}, frac{pi}{2} right ) .
Hence the only principal value of tan^{-1}(-sqrt3) when x = frac{-pi}{3} .

Question:5

Find the principal values of

cos^{-1}left(-frac{1}{2} right )

Answer:
Let us assume that cos^{-1}left(-frac{1}{2} right ) =y then,
Easily we have cos y = left ( frac{-1}{2} right ) or
we can write it as

-cos left ( frac{pi}{3} right ) = cos left ( pi - frac{pi}{3} right ) = cos left ( frac{2pi}{3} right ).

as we know that the range of the principal values of cos^{-1} is left [ 0,pi right ] .
Hence frac{2pi}{3} lies in the range it is a principal solution.

Question:6

Find the principal values of

tan^{-1}(-1)


Answer:
Given tan^{-1}(-1) so we can assume it to be equal to ‘z’ tan^{-1}(-1) =z ,

tan z = -1

or

-tan (frac{pi}{4}) = tan(frac{-pi}{4})= -1

And as we know the range of principal values of tan^{-1} from left ( frac{-pi}{2}, frac{pi}{2} right ) .
As only one value z = -frac{pi}{4} lies hence we have only one principal value that is -frac{pi}{4} .

Question:7

Find the principal values of

sec^{-1}left (frac{2}{sqrt3}right)


Answer:
Let us assume that sec^{-1}left (frac{2}{sqrt3}right) = z then,
we can also write it as; sec z = left (frac{2}{sqrt3}right) .Or sec (frac{pi}{6}) = left (frac{2}{sqrt3}right)
and the principal values lies between left [ 0, pi right ] - left { frac{pi}{2} right } .
Hence we get only one principal value of sec^{-1}left (frac{2}{sqrt3}right) i.e., frac{pi}{6} .

Question:8

Find the principal values of

cot^{-1}(sqrt3)


Answer:
Let us assume that cot^{-1}(sqrt3) = x ,
then we can write in other way cot x = (sqrt3) orcot (frac{pi}{6}) = (sqrt3) .
Hence when x=frac{pi}{6} we have cot (frac{pi}{6}) = (sqrt3)
and the range of principal values of cot^{-1} lies in left ( 0, pi right ) .
Then the principal value of cot^{-1}(sqrt3) is frac{pi}{6}

Question:9

Find the principal values of

cos^{-1}left(-frac{1}{sqrt2} right )


Answer:
Let us assume cos^{-1}left(-frac{1}{sqrt2} right ) = x ;
Then we have cos x = left ( frac{-1}{sqrt 2} right )or-cos (frac{pi}{4}) = left ( frac{-1}{sqrt 2} right ) ,cos (pi - frac{pi}{4}) = cos (frac{3pi}{4}) .
And we know the range of principal values of cos^{-1} is [0,pi] .
So, the only principal value which satisfies cos^{-1}left(-frac{1}{sqrt2} right ) = x is frac{3pi}{4} .

Question:10

Find the principal values of

textup{cosec}^{-1}(-sqrt2)


Answer:
Let us assume the value of textup{cosec}^{-1}(-sqrt2) = y ,
then we have cosec y = (-sqrt 2) or-cosec (frac{pi}{4}) = (-sqrt 2) = cosec (frac{-pi}{4})
and the range of the principal values of textup{cosec}^{-1} lies between left [ frac{-pi}{2},frac{pi}{2} right ] - left { 0 right }
hence the principal value of textup{cosec}^{-1}(-sqrt2) is frac{-pi}{4} .

Question:11

Find the principal values of

tan^{-1}(1) + cos^{-1}left(-frac{1}{2} right ) + sin^{-1}left(-frac{1}{2} right )


Answer:
To find the values first we declare each term to some constant tan^{-1}(1) = x ,
So we have tan x = 1 or tan (frac{pi}{4}) = 1
Therefore x = frac{pi}{4} &

cos^{-1}(frac{-1}{2}) = y

So, we havecos y = left ( frac{-1}{2} right ) = -cos left ( frac{pi}{3} right ) = cos(pi - frac{pi}{3}) = cos left ( frac{2pi}{3} right ) .
Therefore y = frac{2pi}{3} ,sin^{-1}(frac{-1}{2}) = z ,
So we have sin z = frac{-1}{2} or -sin (frac{pi}{6}) =sin (frac{-pi}{6}) = frac{-1}{2}
Therefore z = -frac{pi}{6}
Hence we can calculate the sum

= frac{pi}{4}+frac{2pi}{3}-frac{pi}{6}

=frac{3pi + 8pi -2pi}{12} = frac{9pi}{12}=frac{3pi}{4}

Question:12

Find the principal values of

Answer:
Here we have cos^{-1}left(frac{1}{2} right ) + 2sin^{-1}left(frac{1}{2} right )
let us assume that the value ofcos^{-1}left ( frac{1}{2} right ) = x, :and:sin^{-1}left(frac{1}{2} right ) = y
then we have to find out the value of x +2y.
Calculation of x

Rightarrow cos^{-1}left ( frac{1}{2} right ) = x
Rightarrow cos x = frac{1}{2}

Rightarrow cos frac{pi}{3} = frac{1}{2}
Hence x = frac{pi}{3} .
Calculation of y

Rightarrow sin^{-1}left(frac{1}{2} right ) = y
Rightarrow sin y = frac{1}{2}

Rightarrow sin frac{pi}{6} = frac{1}{2} .
Hence y = frac{pi}{6} .
The required sum will be = frac{pi}{3}+2(frac{pi}{6}) = frac{2pi}{3}

Question:13

Prove the following

3sin^{-1}x = sin^{-1}(3x - 4x^3),;;xinleft[-frac{1}{2},frac{1}{2} right ]

Answer:
Given to prove 3sin^{-1}x = sin^{-1}(3x - 4x^3) where x:epsilon left[-frac{1}{2},frac{1}{2} right ] .
Take theta= sin ^{-1}x or x = sin theta
Take R.H.S value

sin^{-1}(3x - 4x^3)

= sin^{-1}(3sin theta - 4sin^3 theta)= sin^{-1}(sin 3theta)= 3theta= 3sin^{-1}x = L.H.S

Question:14

Prove that 3cos^{-1} x = cos^{-1}(4x^3 - 3x), ;;xinleft[frac{1}{2},1 right ]

Answer:
Given to prove 3cos^{-1} x = cos^{-1}(4x^3 - 3x), ;;xinleft[frac{1}{2},1 right ] .
Take cos^{-1}x = theta or cos theta = x ;
Then we have R.H.S.

cos^{-1}(4x^3 - 3x)

= cos^{-1}(4cos^3 theta - 3costheta) left [ because 4cos^3 theta - 3costheta = cos3 theta right ]= cos^{-1}(cos3theta)= 3theta= 3cos^{-1}x = L.H.S
Hence Proved.

Question:15

Prove that tan^{-1}frac{2}{11} + tan^{-1}frac{7}{24} = tan^{-1}frac{1}{2}

Answer:
Given to prove tan^{-1}frac{2}{11} + tan^{-1}frac{7}{24} = tan^{-1}frac{1}{2}
We have L.H.S

tan^{-1}frac{2}{11} + tan^{-1}frac{7}{24}
=tan^{-1}frac{frac{2}{11} + frac{7}{24} }{1 - left ( frac{2}{11}timesfrac{7}{24} right ) }
left [ because tan^{-1}x + tan^{-1}y = tan^{-1} frac{x +y}{1 - xy} right ]
=tan^{-1}frac{11times 24 }{frac{11times24 -14}{11times 24} }
=tan^{-1}frac{48 + 77}{264 -14}
=tan^{-1}left ( frac{125}{250}right ) = tan^{-1}left ( frac{1}{2} right )

= R.H.S
Hence proved.

Question:16

Prove that 2tan^{-1} frac{1}{2} + tan^{-1}frac{1}{7} = tan^{-1}frac{31}{17}

Answer:
Given to prove 2tan^{-1} frac{1}{2} + tan^{-1}frac{1}{7} = tan^{-1}frac{31}{17}
Then taking L.H.S.
We have 2tan^{-1} frac{1}{2} + tan^{-1}frac{1}{7}

=tan^{-1} frac{2.frac{1}{2}}{1 - left ( frac{1}{2} right )^2} + tan^{-1} frac{1}{7}
because 2tan^{-1} x = tan^{-1} frac{2x}{1- x^2}
=tan^{-1} frac{1}{(frac{3}{4})} + tan^{-1} frac{1}{7}
=tan^{-1} frac{4}{3} + tan^{-1} frac{1}{7}
=tan^{-1} frac{frac{4}{3} + frac{1}{7}}{1 - frac{4}{3}.frac{1}{7}}
left [ because tan^{-1}x + tan^{-1} y = tan^{-1} frac{x +y}{1- xy}right ]
=tan^{-1} left ( frac{frac{28+3}{21}}{frac{21-4}{21}} right )
=tan^{-1} frac{31}{17}

= R.H.S.
Hence proved.

Question:17

Write the following functions in the simplest form

tan^{-1}frac{sqrt{1 + x^2}- 1}{x},;;xneq 0

Answer:
We have tan^{-1}frac{sqrt{1 + x^2}- 1}{x}
Take

therefore
tan^{-1} frac {sqrt{1+x^2} - 1}{x} = tan^{-1}frac{sqrt{1+tan^2 Theta - 1}}{tan Theta}
=tan^{-1}(frac{sec Theta-1}{tan Theta}) = tan^{-1}left ( frac{1-cos Theta}{sin Theta} right )
=tan^{-1}left ( frac {2sin^2left ( frac{Theta}{2} right )}{2sinfrac{Theta}{2}cosfrac{Theta}{2}} right )
=tan^{-1}left ( tanfrac{Theta}{2} right ) = frac{Theta}{2} =frac{1}{2}tan^{-1}x

=frac{1}{2}tan^{-1}x is the simplified form.

Question:18

Write the simplest form of function tan^{-1} frac{1}{sqrt{x^2 -1}},;; |x| > 1″></p>



<p>Answer:<br>Given that <img decoding= or Theta = cosec ^{-1}x

therefore tan^{-1}frac{1}{sqrt{x^2-1}}
=tan^{-1} frac{1}{sqrt{cosec^2 Theta -1}}
=tan^{-1}(frac{1}{cot Theta})

=tan^{-1}(tan Theta) = Theta= cosec^{-1}x

=frac{pi}{2}- sec^{-1}x
[because cosec^{-1}x + sec^{-1}x = frac{pi}{2}]

Question:19

Write the following functions in the simplest form

tan^{-1}left(sqrt{frac{1-cos x}{1 + cos x}} right ),;; 0< x < pi

Answer:
Given that tan^{-1}left(sqrt{frac{1-cos x}{1 + cos x}} right ),;; 0< x < pi
We have in inside the root the term : frac{1-cos x}{1 + cos x}
Put 1-cos x = 2sin^2frac{x}{2} and 1+cos x = 2cos^2frac{x}{2} ,
Then we have,

=tan^{-1}left(sqrt{frac{2sin^2frac{x}{2}}{2cos^2frac{x}{2}}} right )
=tan^{-1}left( frac{sin frac{x}{2}}{cosfrac{x}{2}} right )
=tan^{-1}(tanfrac{x}{2}) = frac{x}{2}

Hence the simplest form is frac{x}{2}

Loading

Leave a Reply

error: